[Website Utama ITS]           
  » Login
Username :
Password :
  » Dosen Per Fakultas
» FMIPA
» FTI
» FTSP
» FTK
» FTIf
» Pasca Sarjana
» PENS
» PPNS
  » Publikasi Ilmiah Per Fakultas
» FMIPA
» FTI
» FTSP
» FTK
» FTIf
» Pasca Sarjana
» PENS
» PPNS
  » Pencarian
  
  
 
 
  Alternative View in Contextual Ontology-Based Reading Material Classification  
Diupload oleh : MM Irfan Subakti, SKom, MScEng, MPhil
Pengarang : MM Irfan Subakti
Tahun : 2017
Dipublikasikan di : Information Technology in the Management and Modelling of Mechatronic Systems (ITMMMS 2017), Tambov State Technical University, Tambov, Russia, 25-27 October 2017, pp. 316-333.
Jenis Jurnal : International Conference
Eksternal Link : http://
Bidang Penelitian : Expert Systems
Abstrak : Reading Material Classification (RMC) classifies an unclassified text into the readability graded reading material based on its text readability. Recent approaches for RMC have used Natural Language Processing (NLP) methods such as machine-learning-based methods (e.g., Support Vector Machine, Multinomial Naïve Bayes and Latent Semantic Indexing) to overcome disadvantages of using the syntactic features, i.e., insufficiency for modelling the levels of text reading difficulty. Ontologies have been used for sharing and reusing knowledge, and perhaps supporting the inference. It will be used for RMC. Concepts and contexts are treated separately in ontologies. By only using basic NLP techniques such as stemming and word sense disambiguation, integrating contextual information into ontologies, i.e., Contextual Ontology (CO), is proposed which aimed to improve the ontology’s performance and possibly other types of quality for RMC. Since CO is the gradation of concepts, i.e., concept variants, then an alternative view in determining the results of RMC can be obtained and utilised. From the evaluation experiments, we do not claim that our proposed method is better than machine-learning based RMC, our system performance is just on a par with them. Rather than beating them, we aimed to use RMC to show that integrating contextual information into ontologies (RMC-CO) provides a considerable benefit for ontologies than not integrate it (RMC-O). 1.56% and 2.11% improvements can be obtained for validation and testing data, respectively.
File : [ PDF ]
Copyright © 2010 - Institut Teknologi Sepuluh Nopember        Desain dan Perawatan: Tim Webmaster ITS (webadmin[at]its.ac.id)